宇称不守恒通俗解释的简单介绍

未解之谜 2023-03-16 07:32www.188915.com世界未解之谜

宇称不守恒通俗解释,即物体不可能存在两个相同的东西,也不可能出现两个不同的状态。这个定理的意思是,任何物体都不可能出现两个状态,因为它它们之间的联系是不可分割的。换句话说,如果一个物体的运动轨迹是平行的,那么它就不可能出现两个状态。

本文目录一览

  • 1、
  • 2、
  • 3、
  • 4、
  • 5、

如何通俗易懂地解释「弱相互作用中宇称不守恒」?

如下

宇称不守恒定律是指在弱相互作用中,互为镜像的物质的运动不对称,由吴健雄用钴60验证。

对称性反映不同物质形态在运动中的共性,而对称性的破坏才使它们显示出各自的特性。如同图案一样,只有对称没有它的破坏,看上去虽然很规则,但显得单调和呆板。

只有基本上对称而又不完全对称才构成美的建筑和图案。大自然正是这样的建筑师。当大自然构造像DNA这样的大分子时,总是遵循复制的原则,将分子按照对称的螺旋结构联接在一起,而构成螺旋形结构的空间排列是全同的。

在复制过程中,对精确对称性的细微的偏离就会在大分子单位的排列次序上产生新的可能性,从而使得那些更便于复制的样式更快地发展,形成了进化的过程。

举例说明

我们可以用一个类似的例子来说明问题。假设有两辆互为镜像的汽车,汽车A的司机坐在左前方座位上,油门踏板在他的右脚附近;而汽车B的司机则坐在右前方座位上,油门踏板在他的左脚附近。

汽车A的司机顺时针方向开动点火钥匙,把汽车发动起来,并用右脚踩油门踏板,使得汽车以一定的速度向前驶去;汽车B的司机也做完全一样的动作,只是左右交换一下——他逆时针方向开动点火钥匙,用左脚踩油门踏板,并且使踏板的倾斜程度与A保持一致。汽车B将会如何运动呢?

也许大多数人会认为,两辆汽车应该以完全一样的速度向前行驶。遗憾的是,他们犯了想的毛病。吴健雄的实验证明了,在粒子世界里,汽车B将以完全不同的速度行驶,方向也未必一致!——粒子世界就是这样不可思议地展现了宇称不守恒。

谁能给我详细解释一下宇称不守恒是怎么回事啊。

宇称不守恒定律是指在弱相互作用中,互为镜像的物质的运动不对称。由吴健雄用钴60验证。

科学界在1956年前一直认为宇称守恒,也就是说一个粒子的镜像与其本身性质完全相同。1956年,科学家发现θ和γ两种介子的自旋,质量,寿命,电荷等完全相同,多数人认为它们是同一种粒子,但θ衰变时产生两个π介子,γ衰变时产生3个,这又说明它们是不同种粒子。

1956年,李政道和杨振宁在深入细致地研究了各种因素之后,大胆地断言τ和θ是完全相同的同一种粒子(后来被称为K介子),但在弱相互作用的环境中,它们的运动规律却不一定完全相同,通俗地说,这两个相同的粒子如果互相照镜子的话,它们的衰变方式在镜子里和镜子外居然不一样!用科学语言来说,“θ-τ”粒子在弱相互作用下是宇称不守恒的。

在最初,“θ-τ”粒子只是被作为一个特殊例外,人们还是不愿意放弃整体微观粒子世界的宇称守恒。此后不久,同为华裔的实验物理学家吴健雄用一个巧妙的实验验证了“宇称不守恒”,从此,“宇称不守恒”才真正被承认为一条具有普遍意义的基础科学原理。

拓展资料

宇称不守恒的发现并不是孤立的。

在微观世界里,基本粒子有三个基本的对称方式:一个是粒子和反粒子互相对称,即对于粒子和反粒子,定律是相同的,这被称为电荷(C)对称;一个是空间反射对称,即同一种粒子之间互为镜像,它们的运动规律是相同的,这叫宇称(P);一个是时间反演对称,即如果我们颠倒粒子的运动方向,粒子的运动是相同的,这被称为时间(T)对称。

这就是说,如果用反粒子代替粒子、把左换成右,以及颠倒时间的流向,那么变换后的物理过程仍遵循同样的物理定律。

,自从宇称守恒定律被李政道和杨振宁打破后,科学家很快又发现,粒子和反粒子的行为并不是完全一样的!一些科学家进而提出,可能正是由于物理定律存在轻微的不对称,使粒子的电荷(C)不对称,导致宇宙大爆炸之初生成的物质比反物质略多了一点点,大部分物质与反物质湮灭了,剩余的物质才形成了我们今天所认识的世界。

如果物理定律严格对称,宇宙连同我们自身就都不会存在了--宇宙大爆炸之后应当诞生了数量相同的物质和反物质,但正反物质相遇后就会立即湮灭,那么,星系、地球乃至人类就都没有机会形成了。

宇称不守恒定律是指在弱相互作用中,互为镜像的物质的运动不对称.由吴健雄用钴60验。

科学界在1956年前一直认为宇称守恒,也就是说一个粒子的镜像与其本身性质完全相同.1956年,科学家发现θ和γ两种介子的自旋,质量,寿命,电荷等完全相同,多数人认为它们是同一种粒子,但θ衰变时产生两个π介子,γ衰变时产生3个,这又说明它们是不同种粒子.

1956年,李政道和杨振宁在深入细致地研究了各种因素之后,大胆地断言τ和θ是完全相同的同一种粒子(后来被称为K介子),但在弱相互作用的环境中,它们的运动规律却不一定完全相同,通俗地说,这两个相同的粒子如果互相照镜子的话,它们的衰变方式在镜子里和镜子外居然不一样!

用科学语言来说,“θ-τ”粒子在弱相互作用下是宇称不守恒的. 在最初,“θ-τ”粒子只是被作为一个特殊例外,人们还是不愿意放弃整体微观粒子世界的宇称守恒。此后不久,同为华裔的实验物理学家吴健雄用一个巧妙的实验验了“宇称不守恒”,从此,“宇称不守恒”才真正被承认为一条具有普遍意义的基础科学原理。

吴健雄用两套实验装置观测钴60的衰变,她在极低温(0.01K)下用强磁场把一套装置中的钴60核自旋方向转向左旋,把另一套装置中的钴60核自旋方向转向右旋,这两套装置中的钴60互为镜像。实验结果表明,这两套装置中的钴60放射出来的电子数有很大差异,而且电子放射的方向也不能互相对称。实验结果实了弱相互作用中的宇称不守恒。

我们可以用一个类似的例子来说明问题。假设有两辆互为镜像的汽车,汽车A的司机坐在左前方座位上,油门踏板在他的右脚附近;而汽车B的司机则坐在右前方座位上,油门踏板在他的左脚附近。现在,汽车A的司机顺时针方向开动点火钥匙,把汽车发动起来,并用右脚踩油门踏板,使得汽车以一定的速度向前驶去;汽车B的司机也做完全一样的动作,只是左右交换一下——他反时针方向开动点火钥匙,用左脚踩油门踏板,并且使踏板的倾斜程度与A保持一致。现在,汽车B将会如何运动呢?

也许大多数人会认为,两辆汽车应该以完全一样的速度向前行驶。遗憾的是,他们犯了想的毛病。吴健雄的实验明了,在粒子世界里,汽车B将以完全不同的速度行驶,方向也未必一致!——粒子世界就是这样不可思议地展现了宇称不守恒。 宇宙源于不守恒 [编辑本段] 宇称不守恒的发现并不事立的。

在微观世界里,基本粒子有三个基本的对称方式一个是粒子和反粒子互相对称,即对于粒子和反粒子,定律是相同的,这被称为电荷(C)对称;一个是空间反射对称,即同一种粒子之间互为镜像,它们的运动规律是相同的,这叫宇称(P);一个是时间反演对称,即如果我们颠倒粒子的运动方向,粒子的运动是相同的,这被称为时间(T)对称。

这就是说,如果用反粒子代替粒子、把左换成右,以及颠倒时间的流向,那么变换后的物理过程仍遵循同样的物理定律。

,自从宇称守恒定律被李政道和杨振宁打破后,科学家很快又发现,粒子和反粒子的行为并不是完全一样的!一些科学家进而提出,可能正是由于物理定律存在轻微的不对称,使粒子的电荷(C)不对称,导致宇宙大爆炸之初生成的物质比反物质略多了一点点,大部分物质与反物质湮灭了,剩余的物质才形成了我们今天所认识的世界。如果物理定律严格对称,宇宙连同我们自身就都不会存在了——宇宙大爆炸之后应当诞生了数量相同的物质和反物质,但正反物质相遇后就会立即湮灭,那么,星系、地球乃至人类就都没有机会形成了。

接下来,科学家发现连时间本身也不再具有对称性了! 可能大多数人原本就认为时光是不可倒流的。日常生活中,时间之箭永远只有一个朝向,“逝者如斯”,老人不能变年轻,打碎的花瓶无法复原,过去与未来的界限泾渭分明。不过,在物理学家眼中,时间却一直被视为是可逆转的。比如说一对光子碰撞产生一个电子和一个正电子,而正负电子相遇则同样产生一对光子,这两个过程都符合基本物理学定律,在时间上是对称的。如果用摄像机拍下其中一个过程然后播放,观看者将不能判断录像带是在正向还是逆向播放——从这个意义上说,时间没有了方向。

,1998年年末,物理学家们却在微观世界中发现了违背时间对称性的事件。欧洲能研究中心的科研人员发现,正负K介子在转换过程中存在时间上的不对称性反K介子转换为K介子的速率要比其逆转过程——即K介子转变为反K介子来得要快。

至此,粒子世界的物理规律的对称性全部破碎了,世界从本质上被明了是不完美的、有缺陷的。 发现过程 [编辑本段] 杨振宁、李政道和吴健雄是中国老百姓耳熟能详的名字,他们的事业巅峰和“宇称”紧紧联系在一起。

用科学家的话说,宇称是内禀宇称的简称。它是表征粒子或粒子组成的系统在空间反射下变换性质的物理量。在空间反射变换下,粒子的场量只改变一个相因子,这相因子就称为该粒子的宇称。我们也可以简单地理解为,宇称就是粒子照镜子时,镜子里的影像。以前人们根据物理界公认的对称性认为,宇称一定是守恒的。这就像有正电子,就一定有负电子一样。杨振宁教授1951年与李政道教授合作,并于1956年共同提出“弱相互作用中宇称不守恒”定律。

宇称不守恒通俗解释世界是真的,宇称不守恒通俗解释举例

1.宇称不守恒,这是一个让许多中国人既熟悉又陌生的词语,熟悉,是因为这是全球华人的第一个诺贝尔奖,我们的教科书和媒体会经常提到这个也是很自然的事情。

2.陌生,是因为大多人除了知道杨振宁和李政道发现了它以外,完全不知道这个宇称不守恒到底在说啥。

3.,跟前沿理论物理的一大堆让人懵圈的专业术语相比,宇称不守恒这五个字看起来还是很亲民的。

4.毕竟我们中学时代就学过能量守恒、动量守恒,对守恒的概念还是很熟悉的,而宇称听起来应该和宇宙的某种对称性有关。

5.,宇称到底是什么呢,为什么它不守恒,为什么宇称的不守恒会让科学界如此震动,以至于杨振宁和李政道在1956年6月提出了宇称不守恒,宇称确实是指一种对称性,要想理解宇称不守恒为什么这么重要,就要先理解为什么对称性这么重要。

宇称不守恒定律是什么意思?

宇称不守恒定律是指在弱相互作用中,互为镜像的物质的运动不对称。由吴健雄用钴60验证。

科学界在1956年前一直认为宇称守恒,也就是说一个粒子的镜像与其本身性质完全相同。1956年,科学家发现θ和γ两种介子的自旋,质量,寿命,电荷等完全相同,多数人认为它们是同一种粒子,但θ衰变时产生两个π介子,γ衰变时产生3个,这又说明它们是不同种粒子。

1956年,李政道和杨振宁在深入细致地研究了各种因素之后,大胆地断言τ和θ是完全相同的同一种粒子(后来被称为K介子),但在弱相互作用的环境中,它们的运动规律却不一定完全相同,通俗地说,这两个相同的粒子如果互相照镜子的话,它们的衰变方式在镜子里和镜子外居然不一样!用科学语言来说,“θ-τ”粒子在弱相互作用下是宇称不守恒的。

在最初,“θ-τ”粒子只是被作为一个特殊例外,人们还是不愿意放弃整体微观粒子世界的宇称守恒。此后不久,同为华裔的实验物理学家吴健雄用一个巧妙的实验验证了“宇称不守恒”,从此,“宇称不守恒”才真正被承认为一条具有普遍意义的基础科学原理。

什么是宇称守恒与宇称不守恒

所谓“宇称”,粗略的说,可理解为“左右对称”或“左右交换”,按照这个解释,所谓“宇称不变性”就是“左右交换不变”。或者“镜象与原物对称”。对称的现象普遍存在于自然界的事物中,事物运动变化的规律左右对称也是人们的普遍认识。在物理学中,对称性具有更为深刻的含义,指的是物理规律在某种变换下的不变性。在相当长的一段时间内,物理学家们相信,所有自然规律在这样的镜象反演下都保持不变。例如进行牛顿运动定律实验时,前面放一面镜子,如果我们看镜内的物理规律性,则同镜外完全相同。比如一个小球A向右运动,我们在镜内看到有一个小球A´ 向左运动,虽然A´与A运动方向相反,但它们都遵从的规律,也就是说力学规律对于镜象反演不变,具有空间反演不变性。同样对于麦克斯韦方程组和薛定谔方程都具有空间反演不变性。

不变性原理通常与守恒定律联系在一起,比如动量守恒定律是物理定律在空间平移下的不变性的体现;能量守恒定律与时间平移不变性相联系;角动量守恒定律是物理定律空间旋转对称性的体现等。在微观世界中微观粒子的状态用波函数ψ描写

即表示波函数的数值随坐标而变。为了描述这种与空间反演对称性相联系的物理量,引入了“宇称”的概念。因为连续两空间反演(镜象反射)就等于本身,第一次反射,第二次反射。宇称这个量同能量、动量等连续变化的物理量不同,它只能取两个分立的值(+1)或(-1),也就是说波函数在镜象对称时有两种可能

第一种情形宇称为正(+1),第二种情形宇称为负(-1),对于一个多粒子系统来说,此系统的总宇称为各该系统粒子的宇称之乘积。

有了以上概念后,根据左右对称性就可引伸出“宇称守恒定律”,表述如下由许多粒子组成的体系,不论经过相互作用发生什么变化(包括可能会使粒子数发生变化),它的总宇称保持不变,则原来为正,相互作用后仍为正;原来为负,相互作用后仍为负。这一定律对于许多情况都是正确的,象强相互作用和电磁相互作用就是如此。因而便认为对于弱相互作用也不言而喻,同样如此。

弱相互作用下的宇称守恒的这一看法一直维持了三十年。但在1954~1956年间人们在粒子物理研究中遇到了一个难题,即所谓的“τ-θ之谜”,就是荷电的κ介子有两种衰变方式,一种记为τ介子,一种记为θ介子。这两种粒子的质量、电荷、寿命、自旋等几乎完全相同,以致于人们不能不怀疑它们是同一粒子。另一方面,它们的衰变情形却不相同,表现为宇称不相同,当τ粒子衰变时,产生三个π介子,它们的宇称为负(根椐已确定了的π介子的宇称为-1和宇称守恒定律),而θ粒子衰变时产生两个π介子,它们的宇称为正,也就是说,τ粒子与θ粒子衰变时具有完全相反的宇称。

如何解释这个现象?可供选择的答案只有两种一种承认宇称守恒定律,则τ粒子与θ粒子是两种不同的粒子,因为它们的宇称不同,相互作用过程宇称应不变,但无法解释为什么θ、τ粒子性质如此相同。另一种确认τ和θ是同一种粒,则宇称守恒定律不成立。

1956年李政道、杨振宁在研究这个问题时,仔细地分析了关于宇称守恒的各种实验资料,发现至少在弱相互作用领域,宇称守恒定律从未得到过实验的验证,而只不过是一个理论上的推论而已。根据“τ-θ之谜”的启示,他们提出在弱相互作用过程前后,宇称可能不守恒,并且还指出可以用β衰变(也是一种弱相互作用)的实验来证实或否定他们的推测。人们对于弱作用的研究已经有了相当长的历史,从发现β放射性算起,已经历了半个多世纪;即使从费米提出β衰变理论算起,也已有二十多个年头。在这漫长岁月中,人们对于弱作用,尤其对于β衰变,已经作过大量实验,却没有一个实验曾经证明过宇称是否守恒。这是因为左右对称性从未有人怀疑过,人们一直相信它,应用它,从未想去检验它。,要怀疑这样一条基本定律,必须持非常慎重的严肃态度,李政道和杨振宁正是在彻底研究了所有已经作过的弱作用实验,并发现还没有一个实验曾证明过宇称是否守恒后,才提出弱作用中宇称可能不守恒的猜测。

,毕竟左右对称原理太明显,太自然了,以致人们很难相信宇称真的会守恒。著名物理学家泡利就曾俏皮地说过“我就不相信上帝竟然会是一个左撇子?”究竟宇称是否守恒,只有让实验来作出判断,为此,李政道和杨振宁设计了一系列可用来检验宇称是否守恒的实验方案,设计的原则 是要安排两套实验装置,它们严格地互为镜象,然后在这两套装置中观测弱作用过程,看看两套装置中出现的是不是互为镜象的现象。

几个月之后,以上设想被另一位美籍华裔物理学家吴健雄教授与美国华盛顿国家标准局的几位物理工作者一起用出色的实验所证实,这是一个关于极化60CO原子核β蜕变的实验。在这个实验中,他们以确凿无疑的证据表明,在弱相互作用过程中宇称守恒定律不成立,弱相互作用下宇称不守恒的发现和实验验证,可以说是第二次世界大战以来最伟大的发现。正是由于这一震惊物理学界的杰出贡献,李政道和杨振宁共同获得了1957年诺贝尔物理奖,这时距他们发表宇称不守恒的研究成果还不到两年,速度之快在诺贝尔奖金史上是罕见的。

这是很了不起的贡献,虽然杨先生的人品一般,但他绝对是二十世纪最好的科学家之一。

Copyright © 2016-2025 www.188915.com 奇秘网 版权所有 Power by